JOURNAL OF COMPUTATIONAL PHYSICS140,400-420 (1998)
ARTICLE NO. CP975888

Two-Level Hierarchical FEM Method for
Modeling Passive Microwave Devices

Sergey V. Polstyanko® and Jin-Fa Leg

*Ansoft Corporation, 4 Station Square, Suite 660, Pittsburgh, Pennsylvania, 15219;
1 ECE Department, WPI, 100 Institute Rd., Worcester, Massachusetts 01609
E-mail: sergey@ansoft.com, jinlee@ee.wpi.edu

Received March 3, 1997; revised November 13, 1997

In recent years multigrid methods have been proven to be very efficient for solving
large systems of linear equations resulting from the discretization of positive definite
differential equations by either the finite difference method ortiversion of the
finite element method. In this paper an iterative method of the multiple level type is
proposed for solving systems of algebraic equations which arise fromvhesion of
the finite element analysis applied to indefinite problems. A two-lgveycle algo-
rithm has been implemented and studied with a Gauss—Seidel iterative scheme used
as a smoother. The convergence of the method has been investigated, and numerical
results for a number of numerical examples are presenteaoss Academic Press
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1. INTRODUCTION

Modern engineering design relies heavily on numerical simulations. In particular,
electromagnetics, it is often necessary to solve partial differential equations (PDE) on c
plicated geometries. To solve such PDE numerically, two common discretization meth
are used: the finite difference method (FDM) and the finite element method (FEM). B
methods start with a discretization of a given geometry. Such discretization may invo
hundreds of thousands of unknowns, and efficient numerical methods are needed to sc
system of linear equations. For matrix equations with very large dimensions, direct meth
(based on Gaussian elimination and its variants) require too much memory and prohibi
computational time. Therefore, iterative matrix solutions are necessary for these large p
lems. However, the rates of convergence of various methods are sensitive to the natu
the problem solved. For this reason no one method may be claimed to be the best fc
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problems. Along with the development of new iterative methods, the problem of accele!
ing the convergence of known iterative methods is of considerable interest from a pract
point of view. Developments in both directions have taken place in recent years.

In this paper we shall discuss multigrid methods that have been developed for acceler:
the convergence of iterative methods [1, 2]. Multigrid methods [3—10] offer an alternati
to efficiently solving large problems, while incurring low additional memory overheads.
notable property of a well-formulated multigrid algorithm is that the number of multigri
cycles required to achieve a given level of convergence is independent of the mesh si:
Thus, multigrid methods enable solutions to be obtaine@ (M) operations, wherdl is
the degree of freedom. Linear complexity of this type is considered to be optimal.

The basic idea behind the multigrid algorithm is to work not with a single grid, but wit
a sequence of grids (“levels”) of increasing fineness, each of which may be introduced
changed in the process and constantly interacts with each other [6]. The method iterati
solves a system of discrete (finite-difference or finite-element) equations on a given ¢
by constant interactions with a hierarchy of coarser grids, taking advantage of the relat
between different discretizations of the same continuous problem. The motivation for
approach comes from an examination of the error of the numerical solution in the freque
domain. High frequency errors, which involve local variations in the solution, are well elir
inated by simple iterative smoothing methods (iterative matrix solution techniques suct
the preconditioned conjugate gradient (PCCG) method, Jacobian iterations). Furthern
coarse grids can be viewed as correction grids, accelerating convergence of a relax
scheme on the finest grid by efficiently liquidating smooth error components.

Typically, a multigrid scheme begins by eliminating the high frequency errors associa
with aninitial solution on the fine grid, using an iterative matrix solver. Once this is achieve
further fine-grid iterations would result only in a convergence degradation. Therefore,
solution is transferred to a coarser grid by using a specified projection operator. On
grid, the low frequency errors of the fine grid manifest themselves as high frequency er
and are thus eliminated efficiently using the same iterative matrix solver (or direct sol
on the coarsest grid). The coarse-grid corrections computed on the coarser grid are
interpolated back to the fine grid in order to update the solution. This procedure can
applied recursively on a sequence of coarser and coarser grids, where each grid le\
responsible for eliminating a particular frequency bandwidth of errors.

In this work we have made an attempt to combine the multigrid concept withtleesion
of the transfinite element approach that has been implemented for the analysis of unbou
problems such as MMIC devices and 3D waveguide junctions [11, 12]. To achieve this g
we have developed a muli-V-cycle algorithm and studied its performance on sampl
problems. This paper is organized as follows: in Section 2 we discuss transfinite elen
method for the analysis of multiport structures, in Setta multip algorithm for the
p-version of the finite element method is introduced, and in Section 4 we present numet
studies of the multip V-cycle. Finally, concluding remarks are given in Section 5.

2. TRANSFINITE ELEMENT FORMULATION FOR MULTIPLE PORTS

To be able to analyze real life passive microwave devices, three-dimensional anal
is required for modeling MMIC devices and waveguide junctions. In this section we sh
describe the transfinite element method (TFEM) for the analysis of multiport wavegu
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junctions [11, 12]. The basis of this approach is to combine tangential vector finite elem
basis functions with modal basis functions to provide solutions for open boundary pr
lems. Furthermore, since field solutions for the two-dimensional port regions are unkno
we use a two-dimensional finite element program to solve for the unknown modal fie
distributions [13].

2.1. The Boundary Value Problem

A simple example of a multiport waveguide junction is shown in Fig. 1. It consisi
of a discontinuity region@o) of an arbitrary shape coupled at ports by two-dimensione
waveguide region<¥; ) with arbitrary cross subsections. The field in the discontinuity regio
(20) and in the port region¥;) extending to infinity satisfies the following Helmholtz
equation, together with boundary conditions

1
Vx—VxE- koe,E 0 ()
Hr

mc“'z:aEI (€2i) (1)
nxE=0 onTl,

wherek3 = w?uoe€o, EI is the jth mode of the waveguidg E . is the excitation mode
for the waveguide, anda' is the modal coefficient to be solved. Furthermore, we set th
number of ports to b and for each port we specify the fifstmodes. Since in Egs. (1)
the amplitude of the modal electric fieIE% is arbitrary we normaliinj to give the unity
pointing vector

i i _ i _ J 1 forpropagating mode
}[i By x Hic- dA = Ky = { j for evanescent mode @

WhereHi]- is the magnetic field of th¢th mode of the waveguideand j = +/—1.

2.2. The Bilinear Form

In order to solve Egs. (1), Galerkin's weighted residual approach has been used to ¢
struct our finite element formulation and leads to a symmetric matrix given later. Applicati
of Galerkin’s method to the current BVP results in the bilinear form

B, V) = (VXV) —(ng)—kov eEdQ— 27{ vX—(va) dA, (3)

whereV, € are the testing and trial fields, respectively. To form the bilinear form (3), w
have employed Green’s theorem and set the testing and trial spaces to be the sam
denoted it byA. In the Galerkin’s process, we need to find a solution vector fun&ion
such thatB(€, V) =0 for every vector functiorV in the infinite-dimensional spacs.
Furthermore, in the finite element process we replad®y a finite-dimensional spacg”
contained inA.

The transfinite element method begins by selecting a suitable subspablstice that
in Fig. 1 we have separated the problem domain into two parts: the discontinuity reg
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FIG. 1. Multiport waveguide junction.

(o) and the waveguide regions(). In the TFEM formulation we use finite element
basis functions for modeling the inhomogeneities and irregular geometries in the fin
sized discontinuity regiort¥y) and modal basis functions to span the solution space in tt
homogeneous and regular waveguide regidag.(Consequently, we construct the finite
dimensional subspack” as

A= |ElE= W : (4)
Elet+ > al€n  ing

wherea is the set of tangential vector basis functions, — denotes a row ved@notes a
column vector, andvl, N are the number of ports and the number of modes specified f
each port, respectively. Notice that we have used two different types of basis function
different regions. Furthermore, these two representations must be matched along the
reference plane in the sense described later.

Using the fact that modes of the waveguide are orthogonal, and from Egs. (1) and
the boundary integrals in (3) can be integrated analytically to result in

1
Vx —(Vx&E - -dA=—jupw d ¥V xH-dA
I Mr T

- —Jko\/’?;’(é[w]ai K8, 5)

where the unknownaj andc are the coefficients of the modesénandV, respectively,
[K'] is the diagonal matrix defined by (2), and the column vegdtds constructed in the
following way: we seIS‘j = 1if modej is the excitation for the regioin otherwiseS‘j =0.
Furthermore, in the derivation of (5) a constant term has been dropped. In addition,
require the tangential continuity of both vector functiéghandy along the port boundary
T'j. This condition can be expressed tas

£" =Pl +[P'a, whereP'] = [Pi..... Py]; ©)

hereg" is the projection of along the boundary edges on pBrtandBij is the column
of projections of mode*:'j along the boundary edgé€s.
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2.3. The Matrix Equation

Finally, based on the above discussion, the bilinear f&#, V) can be expressed in
the matrix form as

M M
BE,V) = VIMIE+ ) jkoy /1K T = 3 oy [2201KTT8, (@)
i=1 i=1

where, taking into account Eq. (6), coefficient vectors are given by

V=V, Pl + TP, ..., PY+TV[PM]T]
€= [, Ph+ P, PYL+&M[PY]T]T ?
and matrixM is of the form
M;j :/QO(ani).M—lr(vXa,-)—kgai g dQ,
(Ml [Mir,] [Miry ]
M] = ['V':w} ['V'F:JJ ['V'rzlw} . ©)
M) Mrun] o [Mrgr

For £ to be a solution of Eq. (1) in the Galerkin sense, the bilinear fB&, V) must be
equal to zero for alV in A". This can be true only if the matrix equation

[Vi]E =y (10)
is satisfied, where
[M] [Mir,][PY] [Mir, |[PM]
(V] = [PT[Mr] [Pl]T[Mrlrl][PllﬂL[Kl] [PT [Mr,r, | [PM]
PMIT M) [PMIT[Meyr TP o [PM]T [Mipr JIPM] + K]
11
and
E=&.,al...,a"", K']= jko ?[Ki], (12)
0
[erl] Pi%c'*' [erz] P|r21c . [MlFM] I:)lnc
Y=—1| [PY [Mrr]Phk+ - +[PY" [Mrr,]PM - [KYs* |. (13)

[PM]T [Mrmrl] R%C "'+[PM]T [MFMFM} inc [KM]SM

Notice that since the submatricedlf] are sparse and the number of modésn the

formulation is usually small enough, matrix multiplications can be done very efficientl
The final matrix is sparse and symmetric and can be solved by using the preconditio
conjugate gradient method (PCCG) or by the multilevel method described in the next sect
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3. MULTI- pMETHOD FOR THE P-VERSION OF THE FINITE ELEMENT ANALYSIS

Multigrid methods have been regarded as one of the most promising iterative meth
for solving systems of linear equations arising from the discretization of partial different
equations by either the FDM or threversion of the FEM [6, 14, 15]. For example, it has
been shown in [16] that for the Poisson equation in a rectangular domain the converge
factor of a multigridv-cycle method is bounded away from one independent of the me
sizeh.

However, in general, there are two kinds of finite element methodsh-trersion and
the p-version. In then-version polynomial basis functions are fixed over each element al
accuracy is achieved by refining the mesh. In contrast, imptlrersion the mesh is fixed
and accuracy is achieved by increasing the degretpolynomial basis functions.

Motivated by the success of multigrid methods for theersion of the FEM, some
researchers have applied multigrid ideas to equations arising from-tlegsion of the
finite element analysis [17, 18]. The namelti-p methodéas been proposed by Babushka
[17], who also has conducted some numerical tests. It has been shown that the mu
V-cycle methods converge faster than the classical Gauss—Seidel or SOR methods, b
as fast as thh-version multigrid methods.

Our objective in the following sections is to investigate the mpltinethods for the
p-version of the transfinite element analysis. We will briefly discuss some of the proper
of the p-version of the TFEM. Furthermore, we will present the mgplti/-cycle algorithm
and show its convergence on representative sample problems.

3.1. Hierarchical Transfinite Element Method

The algorithm discussed in this section is based on the use of hierarchical bases o
type that is often used in thgversion of the adaptive mesh refinement. For example, if on
has solved a problem for a given valuemfcorresponding to a finite element spakeg,,
one can enrich the space to say, orgder 1 by adding certain hierarchical basis functions
to the set of basis functions already used\vify,. If Mh is the new space, then we have the
hierarchical decomposition

M = Mp & W, (14)

whereW, is the function space spanned by the new basis functions. But before we disc
the hierarchical transfinite element method, we should first describe the function sp
H"(curl; ) which is defined by

H"(curl; Q) = (P"(Q))° & S"HQ) (15)
and
S"Q) ={v|ve (P"(Q)% v-r =0} (16)

In Egs. (15) and (16)p means the direct surf®"(2) is the set of piecewise polynomials
which are complete tath order, andP"(Q) is the set of polynomials which are exactly
nth order in, respectively. In other words, in this vector function spa€¥écurl; 2), the
vector functionv and its curlV x v will be at least complete tath order for each of the
vector components.
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FIG. 2. Barycentric coordinates for a tetrahedr@his a point on faceBC D.

We recall now that the basic idea of the transfinite element approach is to combine tan
tial vector finite element basis functions with modal basis functions to provide solutions
open boundary problems. Consequently, inpheersion of the transfinite element method
we utilize both hierarchical vector finite element basis functions and modal basis functic

We start our discussion with the description of hierarchical tangential vector finite elem
method (TVFEM) basis functions. Shown in Fig. 2 is a standard tetrahedral element. E
point of the tetrahedronis characterized by four barycentric coordigatés, &», £3, whose
sum is alwayso + & + & + &3 =1. In barycentric coordinate system the vertices of the
tetrahedron become (1,0,0,0), (0,1,0,0), (0,0,1,0), and (0,0,0,1).

In general, the hierarchical vector basis functions#fccurl; ) andH(curl; ) can
be divided into two groups: the edge vector basis functions and the face basis functi
Furthermore, the edge vector basis functions consist of edge-element basis functions
gradient type basis functions.

Edge vector basis functions.
Wo = &0VEL — £E1VEy, We = 4(5oVéL + E1VEp),

W1 = §VE — £:VE), W7 = 4(50VE + 5 VEy),
Wy = §VEs — £3VEy, Wsg = 4(§0VEz + §3VEp),

17
W3 = §1VE — 6,VE, Wg = 4(51VE + 5 VE), (7)
Wy = §1VE3 — £3VE, Wi = 4(§1VE3 + £3VED),
Ws = §,VE3 — £3VEy, Wyg = 4(6.VE3 + £3VEr),
where the first six function®Vy, ..., W5 are the edge-element vector basis functions, an
the second six functiond/s, . .., W1, are called gradient basis functions because they a

products of the gradient operator applied to a scalar function.

Face vector basis functionsFurthermore, the eight basis functions associated with fac
unknowns are defined as

Wio = 462(61VE3 — E3VE1), Wiz = 483(51VEx — £:VE),
W14 = 462(60VE3 — E3VEp), Wis = 483(50VE2 — £2VEp),
Wie = 461(60VEz — E3VEp), Wiz = 483(50VEL — £1VEp),
Wig = 461(60VE2 — £2VEp), Wig = 462(50VEL — £1VEp),

(18)
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and finally,

HO(curl; Q) = spa{Wo, W, ..., Ws}

19
H(curl; Q) = spaf{Wo, Wy, ..., Wig}. (19)
The above set of basis functions is hierarchic; that is, the finite element &f¢cerl; )
that is spanned by the basis functions with degree up to 1 is completely embedded intc
spaceH!(curl; Q) that is spanned by the basis functions with degree up to 2.

Moreover, if we recall the modal basis functions representation from the previous sect
that is, a modal basis function is a mode in a given waveguide region, then we can intuitiy
see that a combination of hierarchical vector basis functions and modal basis functi
form a hierarchical set of basis functions for theversion of transfinite element method.
Consequently, the matrif] and the right-hand side vectdtin the matrix equation (10)
also have hierarchical structures. For example, if we consider matrix equafién= )*
corresponding to thé(*(curl) TFEM it can be written in block form as

: .
1| (20)
& N

whereM 1; and); correspond to thé(°(curl) version of TFEM equatioM %8 = )°; that

is, MO~ M ; and)®~ ).

M1 My
M2 Mo

3.2. Two-level V -Cycle Algorithm

The basic idea behind theversion of a multilevel algorithm is to accelerate the solutior
process of a set of fine-level equations by computing the corrections on a coarser le
We start with eliminating the high frequency errors associated with an initial solution
the fine level, using iterative matrix solvers (the Gauss—Seidel iterative method and
conjugate gradient method) [1, 2]. Once this is achieved, we compute a residual vector
transfer it to a coarser level where the system of equations corresponding to the coa
level must be solved directly [6] to compute a correction vector to our solution. The coar
level correction is then interpolated back to the fine level in order to update the solut
vector and eliminate low frequency errors. The entire process is then repeated until
desired accuracy for the solution is achieved. Furthermore, in the above process we |
to define prolongation (interpolation) and projection (restriction) operators, as well as
matrix equation on the coarse level and the method of its solution.

The prolongation operatdg corresponding to the mapping fork® (curl) space to the
H(curl) space for thep-version of transfinite element approach is simply defined by th
injection mapping. Furthermore, the projection operafds defined as? = (13)". Based
on the p-version and hierarchical basis functions, the defined prolongation and project
operators can be express in the matrix form as

|3={Ig}, 12=[lo O], 1)

wherelg is theNg x Np identity matrix, and\y is the number of unknowns corresponding
to theH (curl) system of equations.
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In comparison with thér-version multigrid methods, the prolongation and projectior
here are very simple and independent of the domain geometry. Moreover, it is easy to ve
that the prolongation and projection operators satisfy the relation

MO~ 12ML1 L. (22)

Equation (22) is not an equality because the modal basis functions at the ports comp
usingH°(curl) FEM are different from the projection of thié' (curl) modal basis functions
on theH(curl) space.

Finally, to present a two-level mulf-V-cycle method in matrix form we consider matrix
equationM 1€ = ! corresponding to thefX(curl) TFEM and rewrite it in block form as

G [h
<l =1~1, 23

whereM® ~ M 1,. The multi-p algorithm can then be given as follows.

M1 My,
M21 Moo

ALGORITHM.

1. Solve the matrix equatioM°&; =)° on the coarser level to find an initial guess
[£1,0]. o

2. Performyu iterations of the matrix equatioM€ = )* using the Gauss—Seidel
iterative solver, and let the solution B¢ = [E}*, £'].

3. Solve matrix equatioM%e® = 19(J! — M1Er) using the direct solver to correct the
solution vector on the finer levélt1 = £+ 4+ 11(e°).

4. Ifthe residual is within the tolerance, stop; otherwise, go back to step 2 with the init
vectorér+l,

In the following section we will analyze the performance of the two-level muNi-cycle
algorithm for different examples and different values of parameter

4. NUMERICAL EXAMPLES

In this section we present a number of sample problems that have been solved by u
the two-level multip method described in the previous section. First, a simple wavegui
problem will be discussed. Then we will apply the method to a mitered bend exam
and to a shielded microstrip problem. Finally, a rectangular waveguide with a dielect
obstacle will be considered. For each of the above examples we will analyze the converg
behavior of the multip V-cycle algorithm for different frequencies, as well as for differen
values of parameter which corresponds to the number of fine-level relaxations or swee|
between coarse-level corrections. Furthermore, for the waveguide problem two differ
discretizations will be used and the convergence behavior will be compared.

It will be shown that in order for the multp method to work, an additional relation
between the operating frequen€yand the mesh size must be satisfied. Consequently, it
will be demonstrated on different examples that the convergence rate of themuiltircle
algorithmis a function of frequency and discretization, as well as parampgtéoreover, an
adaptive multip V-cycle will be introduced to minimize the computation time. Finally, to
prove the computational efficiency of the muftimethod, the number of iterations required
to achieve a given accuracy by using the ICCG [2] will be compared with the number
iterations for the multip V-cycle solver for each example.
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FIG. 3. The rectangular waveguide and discretization on the PEC boundary, coarse mesh.

4.1. Rectangular Waveguide

In the first example, the mul§p V-cycle algorithm is used to analyze a rectangula
waveguide (width=3 m, height=2 m, length="5 m), depicted in Fig. 3, filled with air. A
coarse discretization corresponds to the meshtsiz®.7 m and the operating frequency
f =100 MHz, and itis approximately six tetrahedral elements per wavelength. Only dor
nant modes have been used to interpolate the electric field within each waveguide region
the excitation has been chosen to be the dominant mode of any of the two waveguide p
The multi-p V-cycle has been applied for different values of parametesrresponding to
the number of fine-level sweeps between coarse-level corrections.

Shown in Fig. 4 is the norm of the relative residual (residual divided by the norm of tl
right-hand side vector) as a function of the number of iterations (number of sweeps on
fine level) for different valueg = 1, 3, 5. As it can be seen from this figure it does not mattel
what choice ofu we choose, the multg V always diverges. This effect can be explainec

10.0 T

— u=1
— =3

E —u= 5

2

1 5.0

[}

£

-

s

=3

o

8

— -

> 0.0

=

o

Ee)

_5.0 L 1
0.0 50.0 100.0

number of iterations

FIG. 4. The convergence behavior of thecycle for different values of parametgr f =100 MHz, coarse
discretization.
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FIG.5. The convergence behavior of thecycle for different values of parameter f =55 MHz.

if we come back and recall that the mufiimethod works if and only if the low frequency
errors are suitably reduced by the coarse-level corrections. Consequently, the coarser
should be fine enough to provide a rough approximation to the low frequency eigenvall
Otherwise the low frequency errors will be magnified and the method will diverge. That
exactly the case in the given example.

One way to make sure that the low frequency eigenvalues are correctly approximse
on the coarse level is to decrease the mesh lsizdowever, we may as well decrease
the operating frequency, which is equivalent to the smaller mesh size. Shown in Fig
is the convergence behavior of the myitiV-cycle method for the same example with
the same discretization as on Fig. 3 but for the operating frequérep5 MHz, which
corresponds to approximately 11 tetrahedral elements per wavelength. One can obse
dramatic change in the behavior of the mytimnethod—it converges now. Furthermore, if
we denote one relaxation sweep (RS) on the fine level as one operation and assume th
coarse-grid correction (CGC) process (restriction + solution on coarse level + interpolati
is time equivalent to one operation on the fine level, then the total number of operati
for u =1is equal to 52RS) + 52(CGC) = 104, foru =2—72RS) + 36(CGC) = 108, for
u=3—115RS) + 38(CGC) = 153, and so on. As can be seen from Fig. 5, the number
operations is minimum fog = 1 value, or in other words, if the coarse-level correction i
done right after each relaxation sweep on the fine level.

However, this number of iterations can be reduced even more if we adglystamically.
That is, relaxation sweeps on the fine level should be discontinued and a switch shoul
made to a coarse-level correction when the rate of convergence becomes slow, hamel

residual norm -
residual norm a sweep earlier 0

(24)

An appropriate value of may easily be found by direct trials. Such a value is typical tc
the problem and is independent of frequency or mesh size. For the given example we |
obtained the minimum number of operations to be 97 (52 RS and 45 CG@)H@x78.

To compare, it takes 120 iterations for ICCG to converge with the same accuracy, and ¢
iteration is equivalent roughly to one fine-level sweep plus the solution of the preconditiol
matrix equation on the fine level.
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FIG. 6. The rectangular waveguide and discretization on the PEC boundary, fine mesh.

Furthermore, we have analyzed the same example but using a different discretize
shown in Fig. 6 which corresponds to the mesh kize 0.42 m. If we choose the operating
frequencyf =100 MHz it results in approximately 11 tetrahedral elements per waveleng
Our objective now is to show that the mufti-V-cycle will work for this frequency, even
though it failed for the coarser discretization.

Presented on Fig. 7 is the norm of the residual divided by the norm of the right-he
side versus the number of iterations for different values of parameted, 3,5. The
method converges for this mesh since the low frequency eigenvalues are now approxim
correctly on the coarse level and the error in low frequencies is decreased after each co
level correction. The minimum number of operations to achieve the final relative resid
10~ is equal to 71 (39 RS and 32 CGC), corresponding tontke0.78 value. One can
compare it with 80 operations (40 RS, 40 CGC) fioe= 1, 76 operations (52 RS, 26 CGC)
for u =2, or 297 iterations of ICCG.

Finally, if one tries to solve the rectangular waveguide problem for the fine discreti:
tion, but for the operating frequendy= 200 MHz, the multip algorithm once again fails

log10(residual / rhs_norm)

8.0 L L I
0.0 50.0 100.0 150.0 200.0

number of iterations

FIG. 7. The convergence behavior of thecycle for different values of parametgr;, f =100 MHz, fine
discretization.
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15.0 T

10.0 +

50

0.0

log10(residual / ths_norm)

-5.0 ‘ : :
0.0 200 40.0 60.0 80.0

number of iterations

FIG. 8. The convergence behavior of thecycle for different values of parametgr;, f =200 MHz, fine
discretization.

(Fig. 8). It is expected, since this frequency corresponds to approximately six elements
wavelength, and the coarse-level correction does not reduce low frequency errors any n
Consequently, to ensure that the mydtiv-cycle algorithm converges using the Gauss-
Seidel smoothing, an additional requirement must be satisfied. That is, the coarse-grid |
should be fine enough to provide a rough approximation to the low frequency eigenfu
tions, especially to eigenfunctions corresponding to the negative eigenvalues of the m:
equation.

4.2. Mitered Bend

As the second sample example, a mitered bend has been considered. Shown in F
is the mitered bend filled with air. Furthermore, the reflection coefficient versus frequer

a=22.86 mm
b=10.16 mm
I=b
Aopt= 0976 a
bopt=0.874 b
opt. -~ .
_________ ™\ dopt/
o 1

FIG. 9. Mitered 90 H-plane and E-plane bends.
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FIG. 10. Reflection coefficient as a function of frequency for the mitered bend.

for this example is plotted in Fig. 10 and compared with previously published resu
from [19]. First the problem domain has been discretized with mesthsiz& mm, which
corresponds to 14,670 tetrahedral elements or 86,604 unknowns fafttoarl) TFEM.
Only dominant modes have been used to describe the electric field within the wavegt
regions, and the excitation has been chosen to be the dominant mode of one of the
This example has been analyzed for different frequencies to compare the performanc
the multi-p V-cycle algorithm with the ICCG solver.

We startthe analysis by taking the operating frequency tb6 GHz. The convergence
behavior of the/-cycle algorithm for different values of parameteis depicted in Fig. 11.
For example, it takes 86 operations (43 RS, 43 CGC)ufer 1, 65 operations (43 RS,
22 CGC) foru = 2, or 73 operations (55 RS, 18 CGC) far=3 to achieve the same
accuracy. Furthermore, the minimum number of iterations equals 65 operations (46 RS
19 CGC) forn = 0.83, which is exactly the same as the number of operations fo2. As
one will see later, in most cases if one chogges?2 the total number of operations will be

log10(residual / rhs_norm}

8.0 . . . .
0.0 20.0 40.0 60.0 80.0 100.0

number of iterations

FIG. 11. The convergence rate of thecycle algorithm for different values ¢f, f =8 GHz, bend example.
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FIG. 12. The convergence rate of thecycle algorithm for different values ¢f, f =10 GHz, bend example.

close to the minimum. To compare, it takes 590 iterations for ICCG to converge with t
same accuracy.

We have also analyzed the above example for frequentieslO GHz and f =
12 GHz. For both frequencies the relative residual versus the number of iterations
been plotted (Fig. 12 and Fig. 13) for different valuegwofor example, for the operating
frequencyf =10 GHz it takes 95 operations (45 RS, 45 CGC) fioe 1, 68 operations
(45RS, 23 CGC) for = 2, and 85 operations (64 RS, 21 CGC) fo 3 to converge to the
final relative residual 10'. The minimum number of operations for the adaptieycle is
equal to 69 (47 RS, 22 CGC) fgr=0.82. It takes 608 iterations for ICCG to achieve the
same accuracy.

Finally, by choosing the operating frequency tofoe 12 GHz one can get the following
results. It takes 96 operations (48 RS, 48 CGR)fet 1, 74 operations (49 RS, 25 CGC)
for u =2, and 102 operations (76 RS, 26 CGC) foe 3 to converge with the final relative
residual 167. The minimum number of operations for the adaptiveycle equals 75
(50 RS, 25 CGC). The ICCG converges to the same error in 690 iterations.
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FIG. 13. The convergence rate of thecycle algorithm for different values q@f, f =12 GHz, bend example.
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FIG. 14. Geometry and surface discretization of the shielded microstrip line, filled with air and dielectt
€, =5. Width=2 m, height=1 m, length=1 m, strip width=1 m.

4.3. Shielded Microstrip Line

Shown in Fig. 14 is a shielded microstrip line that has been chosen as the third exan
Also shown is the surface discretization of the problem domain, corresponding to the m
sizeh =~ 0.18 m, which resultsin 12,222 tetrahedral elements or consequently in 73,534
knowns for thei*(curl) TFEM. This example has been analyzed for different frequencie
f =300 MHz, f =700 MHz, andf = 1000 MHz. The dependence of the relative residua
versus the number of iterations is presented in Figs. 15-17. Furthermore, given in Table
the comparison of the mul{p- V-cycle method for different values of parametewith the
ICCG method. For each value pfthe total number of operations is shown which equal
the number of relaxations sweeps plus the number of coarse grid corrections (RS + CG(
is worth mentioning that the results for the adapt«eycle have been obtained by taking
n=0.73. Finally, given in Table 2 is the number of operations for the adaphaycle
for differentn. As one can see the number of operations is extremely sensitive ip th
value.

4.4, Dielectric Obstacle in Rectangular Waveguide

Inthe last example we have investigated a rectangular waveguide with a dielectric obst
inside (shown in Fig. 18). The parametesind the operating frequendyhave been chosen
tobe 1 mand 95 MHz, respectively. Furthermore, the relative permitévftyr the dielectric
obstacle equals 6. Depicted in Fig. 19 is the reflection coefficient versus the frequel
compared with the results from [20].

TABLE 1
Number of operations! (RS, CGC)
Frequency Number of ICCG
(MHz) nw=1 n=2 nw=3 Adaptive iterations
f =300 60 (30, 30) 48 (32, 16) 52 (39, 13) 48 (34, 14) 222
f =700 70 (35, 35) 61 (40, 21) 75 (56, 19) 62 (32, 30) 234

f =1000 82 (41, 41) 70 (46, 24) 86 (64, 22) 71 (49, 22) 341
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FIG. 15. The convergence rate for the microstrip example correspondihgt800 MHz for different values
of .

log10(residual / rhs_norm)

0 . . . .
0.0 20.0 40.0 60.0 80.0 100.0
number of iterations

FIG.16. The convergence rate for the microstrip example correspondihg2@00 MHz for different values
of .

log10(residula / rhs_norm)
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FIG. 17. The convergence rate for the microstrip example correspondinfg=td 000 MHz for different
values ofu.
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TABLE 2

n 0.67 071 072 073 074 075 076 077 078 079 08 085

#RS 41 41 43 49 57 58 59 62 65 66 67 70
#CGC 38 38 35 22 22 22 22 22 22 22 22 22
Total 79 79 78 71 79 80 81 84 87 88 89 92

First the computational domain has been discretized with mestnsiz€.15 m within
the dielectric obstacle artd~ 0.3 m in the air region. This resulted in 12,260 tetrahedra
elements and 74,692 unknowns for tHé(curl) TFEM. We have studied the convergence
behavior of the multip V-cycle method for two different cases: (i) when only the dominan
mode is taken to interpolate fields in the waveguide regions, and (ii) when the first th
modes are taken. For each case we have plotted the convergence rate for different valt
parametejs.

Plotted in Fig. 20 is the convergence of tecycle when only one mode is assigned for
each port. It takes 116 operations (58 RS, 58 CGC)ferl, 86 operations (57 RS, 29
CGC) foru =2, and 107 operations (80 RS, 27 CGC) fo 3 to converge to the final
residual 108. The minimum number of operations for the adapti«eycle is achieved
whenn =0.79 and it equals 86 operations (60 RS, 26 CGC). In comparison it took ICC
276 iterations to achieve the same accuracy.

Finally, shown in Fig. 21 is the convergence rate ofV¥heycle algorithm when the first
three modes are assigned for each port. All computations have been conducted by
theV-cycle algorithm, but, since the convergence behavior for this case case is exactly
same as for the previous one, no separate data are presented. However, it took ICCC
iterations to converge to the same error.

5. CONCLUDING REMARKS

In this paper we discussed multigrid methods that had been developed for acceler:
the convergence of iterative methods by using a sequence of grids (“levels”) of increas

0556a | 0.888a
2a

FIG. 18. Geometry of the rectangular waveguide with dielectric obstacle.



418 POLSTYANKO AND LEE

1.0 ! .
Katzier
¢ TFEM results
08 f —
0.6
o

04 +
02
0.0 L 1

1.5 2.0 2.5

a*ko

FIG. 19. Reflection coefficient vs frequency, dielectric obstacle. Reference results obtained by using
method of orthogonal expansions.

fineness, each of which may be introduced and changed in the process and const
interacts with each other, and each grid (“level”) is responsible for eliminating a particu
frequency bandwidth of errors. The convergence behavior of these methods is consid
to be optimal.

In this work we made an attempt to combine the multigrid concept witlptiaersion of
the transfinite element approach that had been implemented for the analysis of unboul
problems such as MMIC devices and 3D waveguide junctions. To achieve this goal we
developed a two-levél-cycle algorithm and studied its performance on sample problem
Furthermore, in order to minimize the number of operations required for the pigthod
to converge to a given error, an adaptiecycle algorithm has been implemented and
compared with the standakd-cycle for each example. Based on the numerical results ar
the description of the multp V-cycle algorithm that has been shown in previous section:

)

residual / rhs_norm

log10(

-9.0 . L
0.0 50.0 100.0 150.0

number of iterations

FIG. 20. The convergence behavior of thecycle for the rectangular waveguide with dielectric obstacle,
f =95 MHz. One mode is assigned for each port.
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FIG. 21. The convergence behavior of thecycle for the rectangular waveguide with dielectric obstacle,
f =95 MHz. Three modes are assigned for each port.

we can make some conclusions as well as discuss the advantages and disadvantages
approach.

First, it seems like the multp V-cycle algorithm is competitive with the ICCG method in
terms of efficiency; that is, it requires much less computational effort. Furthermore, it tu
out that the best performance of thlecycle algorithm is achieved when the coarse-leve
correction is performed after each two relaxation sweeps on the fine level. The num
of operations in this case is close to the minimum number of operations achieved by
adaptiveV-cycle algorithm. This is important since for the adaptive method, thedue for
which the minimum number of operations is achieved cannot be predicted in advanc
can only be found by trials, and this value is different for different problem geometries.

Second, the convergence rate of the mpltirethod is a function of frequency as well as
mesh size; that is, if the frequency increases the convergence rate of the method bec
worse. This is due to the fact that the low-frequency eigenfunctions are not approxime
accurately enough on the coarsest level. As has been shown, if the coarsest level is no
enough the method diverges. Consequently, additional care must be taken concernin
coarsest level; it should be fine enough to provide a good approximation to low freque
eigenfunctions, especially to eigenfunctions corresponding to the negative eigenvalue
the matrix equations.

Finally, since on the coarsest level an indefinite problem should be solved directly,
needs to factorize the coarse-level matrix in order to perform coarse-grid corrections
ficiently. Subsequently, if the number of unknowns on the coarsest level is large the |
torization process can be very time consuming. Further research should be conduct
order to avoid the factorization and to solve a system of linear equations correspondin
the coarsest level more efficiently. An algebraic multigrid method might be viewed a:
possible solution of this problem.
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