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In recent years multigrid methods have been proven to be very efficient for solving
large systems of linear equations resulting from the discretization of positive definite
differential equations by either the finite difference method or theh-version of the
finite element method. In this paper an iterative method of the multiple level type is
proposed for solving systems of algebraic equations which arise from thep-version of
the finite element analysis applied to indefinite problems. A two-levelV-cycle algo-
rithm has been implemented and studied with a Gauss–Seidel iterative scheme used
as a smoother. The convergence of the method has been investigated, and numerical
results for a number of numerical examples are presented.c© 1998 Academic Press
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1. INTRODUCTION

Modern engineering design relies heavily on numerical simulations. In particular, in
electromagnetics, it is often necessary to solve partial differential equations (PDE) on com-
plicated geometries. To solve such PDE numerically, two common discretization methods
are used: the finite difference method (FDM) and the finite element method (FEM). Both
methods start with a discretization of a given geometry. Such discretization may involve
hundreds of thousands of unknowns, and efficient numerical methods are needed to solve a
system of linear equations. For matrix equations with very large dimensions, direct methods
(based on Gaussian elimination and its variants) require too much memory and prohibitive
computational time. Therefore, iterative matrix solutions are necessary for these large prob-
lems. However, the rates of convergence of various methods are sensitive to the nature of
the problem solved. For this reason no one method may be claimed to be the best for all
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problems. Along with the development of new iterative methods, the problem of accelerat-
ing the convergence of known iterative methods is of considerable interest from a practical
point of view. Developments in both directions have taken place in recent years.

In this paper we shall discuss multigrid methods that have been developed for accelerating
the convergence of iterative methods [1, 2]. Multigrid methods [3–10] offer an alternative
to efficiently solving large problems, while incurring low additional memory overheads. A
notable property of a well-formulated multigrid algorithm is that the number of multigrid
cycles required to achieve a given level of convergence is independent of the mesh sizeh.
Thus, multigrid methods enable solutions to be obtained inO(N) operations, whereN is
the degree of freedom. Linear complexity of this type is considered to be optimal.

The basic idea behind the multigrid algorithm is to work not with a single grid, but with
a sequence of grids (“levels”) of increasing fineness, each of which may be introduced and
changed in the process and constantly interacts with each other [6]. The method iteratively
solves a system of discrete (finite-difference or finite-element) equations on a given grid
by constant interactions with a hierarchy of coarser grids, taking advantage of the relations
between different discretizations of the same continuous problem. The motivation for this
approach comes from an examination of the error of the numerical solution in the frequency
domain. High frequency errors, which involve local variations in the solution, are well elim-
inated by simple iterative smoothing methods (iterative matrix solution techniques such as
the preconditioned conjugate gradient (PCCG) method, Jacobian iterations). Furthermore,
coarse grids can be viewed as correction grids, accelerating convergence of a relaxation
scheme on the finest grid by efficiently liquidating smooth error components.

Typically, a multigrid scheme begins by eliminating the high frequency errors associated
with an initial solution on the fine grid, using an iterative matrix solver. Once this is achieved,
further fine-grid iterations would result only in a convergence degradation. Therefore, the
solution is transferred to a coarser grid by using a specified projection operator. On this
grid, the low frequency errors of the fine grid manifest themselves as high frequency errors
and are thus eliminated efficiently using the same iterative matrix solver (or direct solver
on the coarsest grid). The coarse-grid corrections computed on the coarser grid are then
interpolated back to the fine grid in order to update the solution. This procedure can be
applied recursively on a sequence of coarser and coarser grids, where each grid level is
responsible for eliminating a particular frequency bandwidth of errors.

In this work we have made an attempt to combine the multigrid concept with thep-version
of the transfinite element approach that has been implemented for the analysis of unbounded
problems such as MMIC devices and 3D waveguide junctions [11, 12]. To achieve this goal
we have developed a multi-p V-cycle algorithm and studied its performance on sample
problems. This paper is organized as follows: in Section 2 we discuss transfinite element
method for the analysis of multiport structures, in Section 3 a multi-p algorithm for the
p-version of the finite element method is introduced, and in Section 4 we present numerical
studies of the multi-p V-cycle. Finally, concluding remarks are given in Section 5.

2. TRANSFINITE ELEMENT FORMULATION FOR MULTIPLE PORTS

To be able to analyze real life passive microwave devices, three-dimensional analysis
is required for modeling MMIC devices and waveguide junctions. In this section we shall
describe the transfinite element method (TFEM) for the analysis of multiport waveguide
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junctions [11, 12]. The basis of this approach is to combine tangential vector finite element
basis functions with modal basis functions to provide solutions for open boundary prob-
lems. Furthermore, since field solutions for the two-dimensional port regions are unknown,
we use a two-dimensional finite element program to solve for the unknown modal field
distributions [13].

2.1. The Boundary Value Problem

A simple example of a multiport waveguide junction is shown in Fig. 1. It consists
of a discontinuity region (Ä0) of an arbitrary shape coupled at ports by two-dimensional
waveguide regions (Äi ) with arbitrary cross subsections. The field in the discontinuity region
(Ä0) and in the port regions (Äi ) extending to infinity satisfies the following Helmholtz
equation, together with boundary conditions

∇ × 1

µr
∇ × E − k2

0εr E = 0 (Ä0)

Ei = Ei
inc +

N∑
j =1

ai
j E

i
j (Äi ) (1)

n × E = 0 on0,

wherek2
0 = ω2µ0ε0, Ei

j is the j th mode of the waveguidei, Ei
inc is the excitation mode

for the waveguidei , andai
j is the modal coefficient to be solved. Furthermore, we set the

number of ports to beM and for each port we specify the firstN modes. Since in Eqs. (1)
the amplitude of the modal electric fieldEi

j is arbitrary we normalizeEi
j to give the unity

pointing vector∮
0i

Ei
k × H i

k · dA = K i
kk =

{
1 for propagating mode,
j for evanescent mode,

(2)

whereH i
j is the magnetic field of thej th mode of the waveguidei and j = √−1.

2.2. The Bilinear Form

In order to solve Eqs. (1), Galerkin’s weighted residual approach has been used to con-
struct our finite element formulation and leads to a symmetric matrix given later. Application
of Galerkin’s method to the current BVP results in the bilinear form

B(E, V) =
∫

Ä0

(∇ ×V) · 1

µr
(∇ ×E)−k2

0V · εr E dÄ−
M∑

m=1

∮
0m

V × 1

µr
(∇ ×E) · dA, (3)

whereV, E are the testing and trial fields, respectively. To form the bilinear form (3), we
have employed Green’s theorem and set the testing and trial spaces to be the same and
denoted it by3. In the Galerkin’s process, we need to find a solution vector functionE
such thatB(E, V) = 0 for every vector functionV in the infinite-dimensional space3.
Furthermore, in the finite element process we replace3 by a finite-dimensional space3h

contained in3.
The transfinite element method begins by selecting a suitable subspace3h. Notice that

in Fig. 1 we have separated the problem domain into two parts: the discontinuity region
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FIG. 1. Multiport waveguide junction.

(Ä0) and the waveguide regions (Äi ). In the TFEM formulation we use finite element
basis functions for modeling the inhomogeneities and irregular geometries in the finite-
sized discontinuity region (Ä0) and modal basis functions to span the solution space in the
homogeneous and regular waveguide regions (Äi ). Consequently, we construct the finite
dimensional subspace3h as

3h =

E | E =


Ē IαI +

M∑
i =1

Ē0iα0i in Ä0

E i
inc +

N∑
n=1

ai
nE i

n in Äi

 , (4)

whereα is the set of tangential vector basis functions, ¯ denotes a row vector,denotes a
column vector, andM, N are the number of ports and the number of modes specified for
each port, respectively. Notice that we have used two different types of basis functions in
different regions. Furthermore, these two representations must be matched along the port
reference plane in the sense described later.

Using the fact that modes of the waveguide are orthogonal, and from Eqs. (1) and (2),
the boundary integrals in (3) can be integrated analytically to result in∮

0i

V × 1

µr
(∇ × E) · dA = − j µ0ω

∮
0i

V × H · dA

= − jk0

√
µ0

ε0
(c̄i [K i ]ai − c̄i [K i ]δi ), (5)

where the unknownsai
j andci

j are the coefficients of the modes inE andV , respectively,
[K i ] is the diagonal matrix defined by (2), and the column vectorδi is constructed in the
following way: we setδi

j = 1 if mode j is the excitation for the regioni , otherwiseδi
j = 0.

Furthermore, in the derivation of (5) a constant term has been dropped. In addition, we
require the tangential continuity of both vector functionsE andV along the port boundary
0i . This condition can be expressed forE as

E0i = Pi
inc + [ Pi ]ai , where [Pi ] = [

Pi
1, . . . , Pi

N

]; (6)

hereE0i is the projection ofE along the boundary edges on port0i andPi
j is the column

of projections of modeE i
j along the boundary edges0i .
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2.3. The Matrix Equation

Finally, based on the above discussion, the bilinear fromB(E, V) can be expressed in
the matrix form as

B(E, V) = V̄[M ]E +
M∑

i =1

jk0

√
µ0

ε0
c̄i [K i ]ai −

M∑
i =1

jk0

√
µ0

ε0
c̄i [K i ]δi , (7)

where, taking into account Eq. (6), coefficient vectors are given by

V̄ = [
V̄ I , P̄1

inc + c̄1[ P1]T , . . . , P̄M
inc + c̄M [ PM ]T

]
E = [

Ē I , P̄1
inc + ā1[ P1]T , . . . , P̄M

inc + āM [ PM ]T
]T

(8)

and matrixM is of the form

Mi j =
∫

Ä0

(∇ ×αi ) · 1

µr
(∇ ×α j ) − k2

0αi · εrα j dÄ,

[M ] =


[MI I ]

[
MI 01

] · · · [
MI 0M

][
M01 I

] [
M0101

] · · · [
M010M

]
...

...
. . .

...[
M0M I

] [
M0M 01

] · · · [
M0M 0M

]

 . (9)

ForE to be a solution of Eq. (1) in the Galerkin sense, the bilinear formB(E, V) must be
equal to zero for allV in 3h. This can be true only if the matrix equation

[M̃ ]Ẽ = Y (10)

is satisfied, where

[M̃ ] =


[MI I ] [ MI 01

]
[ P1] · · · [

MI 0M

]
[ PM ]

[ P1]T
[
M01 I

]
[ P1]T

[
M0101

]
[ P1] + [K̃ 1] · · · [ P1]T

[
M010M

]
[ PM ]

...
...

. . .
...

[ PM ]T
[
M0M I

]
[ PM ]T

[
M0M 01

]
[ P1] · · · [ PM ]T

[
M0M 0M

]
[ PM ] + [K̃ M ]


(11)

and

Ẽ = [Ē I , ā1, . . . , āM ]T , [K̃ i ] = jk0

√
µ0

ε0
[K i ], (12)

Y = −


[
MI 01

]
P1

inc + [
MI 02

]
P2

inc + · · · + [
MI 0M

]
PM

inc

[ P1]
T[

M0101

]
P1

inc + · · · + [ P1]T
[
M010M

]
PM

inc − [K̃ 1]δ1

[ PM ]
T[

M0M 01

]
P1

inc + · · · + [ PM ]T
[
M0M 0M

]
PM

inc − [K̃ M ]δM

 . (13)

Notice that since the submatrices [Mi j ] are sparse and the number of modesN in the
formulation is usually small enough, matrix multiplications can be done very efficiently.
The final matrix is sparse and symmetric and can be solved by using the preconditioned
conjugate gradient method (PCCG) or by the multilevel method described in the next section.
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3. MULTI- p METHOD FOR THE P-VERSION OF THE FINITE ELEMENT ANALYSIS

Multigrid methods have been regarded as one of the most promising iterative methods
for solving systems of linear equations arising from the discretization of partial differential
equations by either the FDM or theh-version of the FEM [6, 14, 15]. For example, it has
been shown in [16] that for the Poisson equation in a rectangular domain the convergence
factor of a multigridV-cycle method is bounded away from one independent of the mesh
sizeh.

However, in general, there are two kinds of finite element methods: theh-version and
the p-version. In theh-version polynomial basis functions are fixed over each element and
accuracy is achieved by refining the mesh. In contrast, in thep-version the mesh is fixed
and accuracy is achieved by increasing the degreep of polynomial basis functions.

Motivated by the success of multigrid methods for theh-version of the FEM, some
researchers have applied multigrid ideas to equations arising from thep-version of the
finite element analysis [17, 18]. The namemulti-p methodshas been proposed by Babushka
[17], who also has conducted some numerical tests. It has been shown that the multi-p
V-cycle methods converge faster than the classical Gauss–Seidel or SOR methods, but not
as fast as theh-version multigrid methods.

Our objective in the following sections is to investigate the multi-p methods for the
p-version of the transfinite element analysis. We will briefly discuss some of the properties
of the p-version of the TFEM. Furthermore, we will present the multi-p V-cycle algorithm
and show its convergence on representative sample problems.

3.1. Hierarchical Transfinite Element Method

The algorithm discussed in this section is based on the use of hierarchical bases of the
type that is often used in thep-version of the adaptive mesh refinement. For example, if one
has solved a problem for a given value ofp, corresponding to a finite element spaceMh,
one can enrich the space to say, orderp + 1 by adding certain hierarchical basis functions
to the set of basis functions already used inMh. If M̄h is the new space, then we have the
hierarchical decomposition

M̄h =Mh ⊕Wh, (14)

whereWh is the function space spanned by the new basis functions. But before we discuss
the hierarchical transfinite element method, we should first describe the function space
Hn(curl; Ä) which is defined by

Hn(curl; Ä) = (Pn(Ä))3 ⊕ Sn+1(Ä) (15)

and

Sn(Ä) = {v | v ∈ (P̄n
(Ä))3, v · r = 0}. (16)

In Eqs. (15) and (16),⊕ means the direct sum,Pn(Ä) is the set of piecewise polynomials
which are complete tonth order, andP̄n

(Ä) is the set of polynomials which are exactly
nth order inÄ, respectively. In other words, in this vector function spaceHn(curl; Ä), the
vector functionv and its curl∇ × v will be at least complete tonth order for each of the
vector components.
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FIG. 2. Barycentric coordinates for a tetrahedron.Q is a point on faceBC D.

We recall now that the basic idea of the transfinite element approach is to combine tangen-
tial vector finite element basis functions with modal basis functions to provide solutions for
open boundary problems. Consequently, in thep-version of the transfinite element method
we utilize both hierarchical vector finite element basis functions and modal basis functions.

We start our discussion with the description of hierarchical tangential vector finite element
method (TVFEM) basis functions. Shown in Fig. 2 is a standard tetrahedral element. Each
point of the tetrahedron is characterized by four barycentric coordinates,ξ0, ξ1, ξ2, ξ3,whose
sum is alwaysξ0 + ξ1 + ξ2 + ξ3 = 1. In barycentric coordinate system the vertices of the
tetrahedron become (1,0,0,0), (0,1,0,0), (0,0,1,0), and (0,0,0,1).

In general, the hierarchical vector basis functions forH0(curl; Ä) andH1(curl; Ä) can
be divided into two groups: the edge vector basis functions and the face basis functions.
Furthermore, the edge vector basis functions consist of edge-element basis functions and
gradient type basis functions.

Edge vector basis functions.

W0 = ξ0∇ξ1 − ξ1∇ξ0, W6 = 4(ξ0∇ξ1 + ξ1∇ξ0),

W1 = ξ0∇ξ2 − ξ2∇ξ0, W7 = 4(ξ0∇ξ2 + ξ2∇ξ0),

W2 = ξ0∇ξ3 − ξ3∇ξ0, W8 = 4(ξ0∇ξ3 + ξ3∇ξ0),

W3 = ξ1∇ξ2 − ξ2∇ξ1, W9 = 4(ξ1∇ξ2 + ξ2∇ξ1),

W4 = ξ1∇ξ3 − ξ3∇ξ1, W10 = 4(ξ1∇ξ3 + ξ3∇ξ1),

W5 = ξ2∇ξ3 − ξ3∇ξ2, W11 = 4(ξ2∇ξ3 + ξ3∇ξ2),

(17)

where the first six functionsW0, . . . , W5 are the edge-element vector basis functions, and
the second six functionsW6, . . . , W11 are called gradient basis functions because they are
products of the gradient operator applied to a scalar function.

Face vector basis functions.Furthermore, the eight basis functions associated with face
unknowns are defined as

W12 = 4ξ2(ξ1∇ξ3 − ξ3∇ξ1), W13 = 4ξ3(ξ1∇ξ2 − ξ2∇ξ1),

W14 = 4ξ2(ξ0∇ξ3 − ξ3∇ξ0), W15 = 4ξ3(ξ0∇ξ2 − ξ2∇ξ0),

W16 = 4ξ1(ξ0∇ξ3 − ξ3∇ξ0), W17 = 4ξ3(ξ0∇ξ1 − ξ1∇ξ0),

W18 = 4ξ1(ξ0∇ξ2 − ξ2∇ξ0), W19 = 4ξ2(ξ0∇ξ1 − ξ1∇ξ0),

(18)
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and finally,

H0(curl; Ä) = span
{

W0, W1, . . . , W5
}

H1(curl; Ä) = span
{

W0, W1, . . . , W19
}
.

(19)

The above set of basis functions is hierarchic; that is, the finite element spaceH0(curl; Ä)

that is spanned by the basis functions with degree up to 1 is completely embedded into the
spaceH1(curl; Ä) that is spanned by the basis functions with degree up to 2.

Moreover, if we recall the modal basis functions representation from the previous section,
that is, a modal basis function is a mode in a given waveguide region, then we can intuitively
see that a combination of hierarchical vector basis functions and modal basis functions
form a hierarchical set of basis functions for thep-version of transfinite element method.
Consequently, the matrix [̃M ] and the right-hand side vectorY in the matrix equation (10)
also have hierarchical structures. For example, if we consider matrix equationM̃ 1Ẽ = Ỹ1

corresponding to theH1(curl) TFEM it can be written in block form as[
M̃ 11 M̃ 12

M̃ 21 M̃ 22

] [
Ẽ1

Ẽ2

]
=

[
Ỹ1

Ỹ2

]
, (20)

whereM̃ 11 andỸ1 correspond to theH0(curl) version of TFEM equationM̃ 0Ẽ = Ỹ0; that
is, M̃ 0 ≈ M̃ 11 andỸ0 ≈ Ỹ1.

3.2. Two-level V -Cycle Algorithm

The basic idea behind thep-version of a multilevel algorithm is to accelerate the solution
process of a set of fine-level equations by computing the corrections on a coarser level.
We start with eliminating the high frequency errors associated with an initial solution on
the fine level, using iterative matrix solvers (the Gauss–Seidel iterative method and the
conjugate gradient method) [1, 2]. Once this is achieved, we compute a residual vector and
transfer it to a coarser level where the system of equations corresponding to the coarsest
level must be solved directly [6] to compute a correction vector to our solution. The coarse-
level correction is then interpolated back to the fine level in order to update the solution
vector and eliminate low frequency errors. The entire process is then repeated until the
desired accuracy for the solution is achieved. Furthermore, in the above process we need
to define prolongation (interpolation) and projection (restriction) operators, as well as the
matrix equation on the coarse level and the method of its solution.

The prolongation operatorI 1
0 corresponding to the mapping formH0(curl) space to the

H1(curl) space for thep-version of transfinite element approach is simply defined by the
injection mapping. Furthermore, the projection operatorI 0

1 is defined asI 0
1 = (I 1

0 )T . Based
on thep-version and hierarchical basis functions, the defined prolongation and projection
operators can be express in the matrix form as

I 1
0 =

[
I0

0

]
, I 0

1 = [ I0 0], (21)

whereI0 is theN0 × N0 identity matrix, andN0 is the number of unknowns corresponding
to theH0(curl) system of equations.
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In comparison with theh-version multigrid methods, the prolongation and projection
here are very simple and independent of the domain geometry. Moreover, it is easy to verify
that the prolongation and projection operators satisfy the relation

M̃ 0 ≈ I 0
1 M̃ 1I 1

0 . (22)

Equation (22) is not an equality because the modal basis functions at the ports computed
usingH0(curl) FEM are different from the projection of theH1(curl) modal basis functions
on theH0(curl) space.

Finally, to present a two-level multi-p V-cycle method in matrix form we consider matrix
equationM̃ 1Ẽ = Ỹ1 corresponding to theH1(curl) TFEM and rewrite it in block form as[

M̃ 11 M̃ 12

M̃ 21 M̃ 22

] [
Ẽ1

Ẽ2

]
=

[
Ỹ1

Ỹ2

]
, (23)

whereM̃ 0 ≈ M̃ 11. The multi-p algorithm can then be given as follows.

ALGORITHM.

1. Solve the matrix equatioñM 0Ẽ1 = Ỹ0 on the coarser level to find an initial guess
[Ẽ1, 0].

2. Performµ iterations of the matrix equatioñM 1Ẽ = Ỹ1 using the Gauss–Seidel
iterative solver, and let the solution beẼµ = [Ẽµ

1 , Ẽµ
2 ].

3. Solve matrix equatioñM 0e0 = I 0
1 (Ỹ1 − M̃ 1Ẽµ) using the direct solver to correct the

solution vector on the finer level̃Eµ+1 = Ẽµ + I 1
0 (e0).

4. If the residual is within the tolerance, stop; otherwise, go back to step 2 with the initial
vectorẼµ+1.

In the following section we will analyze the performance of the two-level multi-p V-cycle
algorithm for different examples and different values of parameterµ.

4. NUMERICAL EXAMPLES

In this section we present a number of sample problems that have been solved by using
the two-level multi-p method described in the previous section. First, a simple waveguide
problem will be discussed. Then we will apply the method to a mitered bend example
and to a shielded microstrip problem. Finally, a rectangular waveguide with a dielectric
obstacle will be considered. For each of the above examples we will analyze the convergence
behavior of the multi-p V-cycle algorithm for different frequencies, as well as for different
values of parameterµ which corresponds to the number of fine-level relaxations or sweeps
between coarse-level corrections. Furthermore, for the waveguide problem two different
discretizations will be used and the convergence behavior will be compared.

It will be shown that in order for the multi-p method to work, an additional relation
between the operating frequencyf and the mesh sizeh must be satisfied. Consequently, it
will be demonstrated on different examples that the convergence rate of the multi-p V-cycle
algorithm is a function of frequency and discretization, as well as parameterµ. Moreover, an
adaptive multi-p V-cycle will be introduced to minimize the computation time. Finally, to
prove the computational efficiency of the multi-p method, the number of iterations required
to achieve a given accuracy by using the ICCG [2] will be compared with the number of
iterations for the multi-p V-cycle solver for each example.
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FIG. 3. The rectangular waveguide and discretization on the PEC boundary, coarse mesh.

4.1. Rectangular Waveguide

In the first example, the multi-p V-cycle algorithm is used to analyze a rectangular
waveguide (width= 3 m, height= 2 m, length= 5 m), depicted in Fig. 3, filled with air. A
coarse discretization corresponds to the mesh sizeh ≈ 0.7 m and the operating frequency
f = 100 MHz, and it is approximately six tetrahedral elements per wavelength. Only domi-
nant modes have been used to interpolate the electric field within each waveguide region, and
the excitation has been chosen to be the dominant mode of any of the two waveguide ports.
The multi-p V-cycle has been applied for different values of parameterµ corresponding to
the number of fine-level sweeps between coarse-level corrections.

Shown in Fig. 4 is the norm of the relative residual (residual divided by the norm of the
right-hand side vector) as a function of the number of iterations (number of sweeps on the
fine level) for different valuesµ = 1, 3, 5. As it can be seen from this figure it does not matter
what choice ofµ we choose, the multi-p V always diverges. This effect can be explained

FIG. 4. The convergence behavior of theV-cycle for different values of parameterµ, f = 100 MHz, coarse
discretization.



          

410 POLSTYANKO AND LEE

FIG. 5. The convergence behavior of theV-cycle for different values of parameterµ, f = 55 MHz.

if we come back and recall that the multi-p method works if and only if the low frequency
errors are suitably reduced by the coarse-level corrections. Consequently, the coarser level
should be fine enough to provide a rough approximation to the low frequency eigenvalues.
Otherwise the low frequency errors will be magnified and the method will diverge. That is
exactly the case in the given example.

One way to make sure that the low frequency eigenvalues are correctly approximated
on the coarse level is to decrease the mesh sizeh. However, we may as well decrease
the operating frequency, which is equivalent to the smaller mesh size. Shown in Fig. 5
is the convergence behavior of the multi-p V-cycle method for the same example with
the same discretization as on Fig. 3 but for the operating frequencyf = 55 MHz, which
corresponds to approximately 11 tetrahedral elements per wavelength. One can observe a
dramatic change in the behavior of the multi-p method—it converges now. Furthermore, if
we denote one relaxation sweep (RS) on the fine level as one operation and assume that the
coarse-grid correction (CGC) process (restriction + solution on coarse level + interpolation)
is time equivalent to one operation on the fine level, then the total number of operations
for µ = 1 is equal to 52(RS) + 52(CGC) = 104, forµ = 2—72(RS) + 36(CGC) = 108, for
µ = 3—115(RS) + 38(CGC) = 153, and so on. As can be seen from Fig. 5, the number of
operations is minimum forµ = 1 value, or in other words, if the coarse-level correction is
done right after each relaxation sweep on the fine level.

However, this number of iterations can be reduced even more if we adjustµ dynamically.
That is, relaxation sweeps on the fine level should be discontinued and a switch should be
made to a coarse-level correction when the rate of convergence becomes slow, namely

residual norm

residual norm a sweep earlier
≥ η. (24)

An appropriate value ofη may easily be found by direct trials. Such a value is typical to
the problem and is independent of frequency or mesh size. For the given example we have
obtained the minimum number of operations to be 97 (52 RS and 45 CGC) forη = 0.78.
To compare, it takes 120 iterations for ICCG to converge with the same accuracy, and each
iteration is equivalent roughly to one fine-level sweep plus the solution of the preconditioner
matrix equation on the fine level.
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FIG. 6. The rectangular waveguide and discretization on the PEC boundary, fine mesh.

Furthermore, we have analyzed the same example but using a different discretization
shown in Fig. 6 which corresponds to the mesh sizeh ≈ 0.42 m. If we choose the operating
frequencyf = 100 MHz it results in approximately 11 tetrahedral elements per wavelength.
Our objective now is to show that the multi-p V-cycle will work for this frequency, even
though it failed for the coarser discretization.

Presented on Fig. 7 is the norm of the residual divided by the norm of the right-hand
side versus the number of iterations for different values of parameterµ = 1, 3, 5. The
method converges for this mesh since the low frequency eigenvalues are now approximated
correctly on the coarse level and the error in low frequencies is decreased after each coarse-
level correction. The minimum number of operations to achieve the final relative residual
10−7 is equal to 71 (39 RS and 32 CGC), corresponding to theη = 0.78 value. One can
compare it with 80 operations (40 RS, 40 CGC) forµ = 1, 76 operations (52 RS, 26 CGC)
for µ = 2, or 297 iterations of ICCG.

Finally, if one tries to solve the rectangular waveguide problem for the fine discretiza-
tion, but for the operating frequencyf = 200 MHz, the multi-p algorithm once again fails

FIG. 7. The convergence behavior of theV-cycle for different values of parameterµ, f = 100 MHz, fine
discretization.
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FIG. 8. The convergence behavior of theV-cycle for different values of parameterµ, f = 200 MHz, fine
discretization.

(Fig. 8). It is expected, since this frequency corresponds to approximately six elements per
wavelength, and the coarse-level correction does not reduce low frequency errors any more.
Consequently, to ensure that the multi-p V-cycle algorithm converges using the Gauss–
Seidel smoothing, an additional requirement must be satisfied. That is, the coarse-grid level
should be fine enough to provide a rough approximation to the low frequency eigenfunc-
tions, especially to eigenfunctions corresponding to the negative eigenvalues of the matrix
equation.

4.2. Mitered Bend

As the second sample example, a mitered bend has been considered. Shown in Fig. 9
is the mitered bend filled with air. Furthermore, the reflection coefficient versus frequency

FIG. 9. Mitered 90 H-plane and E-plane bends.
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FIG. 10. Reflection coefficient as a function of frequency for the mitered bend.

for this example is plotted in Fig. 10 and compared with previously published results
from [19]. First the problem domain has been discretized with mesh sizeh ≈ 3 mm, which
corresponds to 14,670 tetrahedral elements or 86,604 unknowns for theH1(curl) TFEM.
Only dominant modes have been used to describe the electric field within the waveguide
regions, and the excitation has been chosen to be the dominant mode of one of the ports.
This example has been analyzed for different frequencies to compare the performance of
the multi-p V-cycle algorithm with the ICCG solver.

We start the analysis by taking the operating frequency to bef = 8 GHz. The convergence
behavior of theV-cycle algorithm for different values of parameterµ is depicted in Fig. 11.
For example, it takes 86 operations (43 RS, 43 CGC) forµ = 1, 65 operations (43 RS,
22 CGC) forµ = 2, or 73 operations (55 RS, 18 CGC) forµ = 3 to achieve the same
accuracy. Furthermore, the minimum number of iterations equals 65 operations (46 RS and
19 CGC) forη = 0.83, which is exactly the same as the number of operations forµ = 2. As
one will see later, in most cases if one choosesµ = 2 the total number of operations will be

FIG. 11. The convergence rate of theV-cycle algorithm for different values ofµ, f = 8 GHz, bend example.
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FIG. 12. The convergence rate of theV-cycle algorithm for different values ofµ, f = 10 GHz, bend example.

close to the minimum. To compare, it takes 590 iterations for ICCG to converge with the
same accuracy.

We have also analyzed the above example for frequenciesf = 10 GHz and f =
12 GHz. For both frequencies the relative residual versus the number of iterations has
been plotted (Fig. 12 and Fig. 13) for different values ofµ. For example, for the operating
frequency f = 10 GHz it takes 95 operations (45 RS, 45 CGC) forµ = 1, 68 operations
(45 RS, 23 CGC) forµ = 2, and 85 operations (64 RS, 21 CGC) forµ = 3 to converge to the
final relative residual 10−7. The minimum number of operations for the adaptiveV-cycle is
equal to 69 (47 RS, 22 CGC) forη = 0.82. It takes 608 iterations for ICCG to achieve the
same accuracy.

Finally, by choosing the operating frequency to bef = 12 GHz one can get the following
results. It takes 96 operations (48 RS, 48 CGR) forµ = 1, 74 operations (49 RS, 25 CGC)
for µ = 2, and 102 operations (76 RS, 26 CGC) forµ = 3 to converge with the final relative
residual 10−7. The minimum number of operations for the adaptiveV-cycle equals 75
(50 RS, 25 CGC). The ICCG converges to the same error in 690 iterations.

FIG. 13. The convergence rate of theV-cycle algorithm for different values ofµ, f = 12 GHz, bend example.



               

FIG. 14. Geometry and surface discretization of the shielded microstrip line, filled with air and dielectric
εr = 5. Width= 2 m, height= 1 m, length= 1 m, strip width= 1 m.

4.3. Shielded Microstrip Line

Shown in Fig. 14 is a shielded microstrip line that has been chosen as the third example.
Also shown is the surface discretization of the problem domain, corresponding to the mesh
sizeh ≈ 0.18 m, which results in 12,222 tetrahedral elements or consequently in 73,534 un-
knowns for theH1(curl) TFEM. This example has been analyzed for different frequencies:
f = 300 MHz, f = 700 MHz, andf = 1000 MHz. The dependence of the relative residual
versus the number of iterations is presented in Figs. 15–17. Furthermore, given in Table 1 is
the comparison of the multi-p V-cycle method for different values of parameterµ with the
ICCG method. For each value ofµ the total number of operations is shown which equals
the number of relaxations sweeps plus the number of coarse grid corrections (RS + CGC). It
is worth mentioning that the results for the adaptiveV-cycle have been obtained by taking
η = 0.73. Finally, given in Table 2 is the number of operations for the adaptiveV-cycle
for different η. As one can see the number of operations is extremely sensitive to theη

value.

4.4. Dielectric Obstacle in Rectangular Waveguide

In the last example we have investigated a rectangular waveguide with a dielectric obstacle
inside (shown in Fig. 18). The parametera and the operating frequencyf have been chosen
to be 1 m and 95 MHz, respectively. Furthermore, the relative permittivityεr for the dielectric
obstacle equals 6. Depicted in Fig. 19 is the reflection coefficient versus the frequency,
compared with the results from [20].

TABLE 1

Frequency
Number of operationsN (RS, CGC)

Number of ICCG
(MHz) µ = 1 µ = 2 µ = 3 Adaptive iterations

f = 300 60 (30, 30) 48 (32, 16) 52 (39, 13) 48 (34, 14) 222
f = 700 70 (35, 35) 61 (40, 21) 75 (56, 19) 62 (32, 30) 234
f = 1000 82 (41, 41) 70 (46, 24) 86 (64, 22) 71 (49, 22) 341
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FIG. 15. The convergence rate for the microstrip example corresponding tof = 300 MHz for different values
of µ.

FIG. 16. The convergence rate for the microstrip example corresponding tof = 700 MHz for different values
of µ.

FIG. 17. The convergence rate for the microstrip example corresponding tof = 1000 MHz for different
values ofµ.
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TABLE 2

η 0.67 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.8 0.85

# RS 41 41 43 49 57 58 59 62 65 66 67 70
# CGC 38 38 35 22 22 22 22 22 22 22 22 22
Total 79 79 78 71 79 80 81 84 87 88 89 92

First the computational domain has been discretized with mesh sizeh ≈ 0.15 m within
the dielectric obstacle andh ≈ 0.3 m in the air region. This resulted in 12,260 tetrahedral
elements and 74,692 unknowns for theH1(curl) TFEM. We have studied the convergence
behavior of the multi-p V-cycle method for two different cases: (i) when only the dominant
mode is taken to interpolate fields in the waveguide regions, and (ii) when the first three
modes are taken. For each case we have plotted the convergence rate for different values of
parameterµ.

Plotted in Fig. 20 is the convergence of theV-cycle when only one mode is assigned for
each port. It takes 116 operations (58 RS, 58 CGC) forµ = 1, 86 operations (57 RS, 29
CGC) forµ = 2, and 107 operations (80 RS, 27 CGC) forµ = 3 to converge to the final
residual 10−8. The minimum number of operations for the adaptiveV-cycle is achieved
whenη = 0.79 and it equals 86 operations (60 RS, 26 CGC). In comparison it took ICCG
276 iterations to achieve the same accuracy.

Finally, shown in Fig. 21 is the convergence rate of theV-cycle algorithm when the first
three modes are assigned for each port. All computations have been conducted by using
theV-cycle algorithm, but, since the convergence behavior for this case case is exactly the
same as for the previous one, no separate data are presented. However, it took ICCG 313
iterations to converge to the same error.

5. CONCLUDING REMARKS

In this paper we discussed multigrid methods that had been developed for accelerating
the convergence of iterative methods by using a sequence of grids (“levels”) of increasing

FIG. 18. Geometry of the rectangular waveguide with dielectric obstacle.
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FIG. 19. Reflection coefficient vs frequency, dielectric obstacle. Reference results obtained by using the
method of orthogonal expansions.

fineness, each of which may be introduced and changed in the process and constantly
interacts with each other, and each grid (“level”) is responsible for eliminating a particular
frequency bandwidth of errors. The convergence behavior of these methods is considered
to be optimal.

In this work we made an attempt to combine the multigrid concept with thep-version of
the transfinite element approach that had been implemented for the analysis of unbounded
problems such as MMIC devices and 3D waveguide junctions. To achieve this goal we have
developed a two-levelV-cycle algorithm and studied its performance on sample problems.
Furthermore, in order to minimize the number of operations required for the multi-p method
to converge to a given error, an adaptiveV-cycle algorithm has been implemented and
compared with the standardV-cycle for each example. Based on the numerical results and
the description of the multi-p V-cycle algorithm that has been shown in previous sections,

FIG. 20. The convergence behavior of theV-cycle for the rectangular waveguide with dielectric obstacle,
f = 95 MHz. One mode is assigned for each port.
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FIG. 21. The convergence behavior of theV-cycle for the rectangular waveguide with dielectric obstacle,
f = 95 MHz. Three modes are assigned for each port.

we can make some conclusions as well as discuss the advantages and disadvantages of this
approach.

First, it seems like the multi-p V-cycle algorithm is competitive with the ICCG method in
terms of efficiency; that is, it requires much less computational effort. Furthermore, it turns
out that the best performance of theV-cycle algorithm is achieved when the coarse-level
correction is performed after each two relaxation sweeps on the fine level. The number
of operations in this case is close to the minimum number of operations achieved by the
adaptiveV-cycle algorithm. This is important since for the adaptive method theη value for
which the minimum number of operations is achieved cannot be predicted in advance, it
can only be found by trials, and this value is different for different problem geometries.

Second, the convergence rate of the multi-p method is a function of frequency as well as
mesh size; that is, if the frequency increases the convergence rate of the method becomes
worse. This is due to the fact that the low-frequency eigenfunctions are not approximated
accurately enough on the coarsest level. As has been shown, if the coarsest level is not fine
enough the method diverges. Consequently, additional care must be taken concerning the
coarsest level; it should be fine enough to provide a good approximation to low frequency
eigenfunctions, especially to eigenfunctions corresponding to the negative eigenvalues of
the matrix equations.

Finally, since on the coarsest level an indefinite problem should be solved directly, one
needs to factorize the coarse-level matrix in order to perform coarse-grid corrections ef-
ficiently. Subsequently, if the number of unknowns on the coarsest level is large the fac-
torization process can be very time consuming. Further research should be conducted in
order to avoid the factorization and to solve a system of linear equations corresponding to
the coarsest level more efficiently. An algebraic multigrid method might be viewed as a
possible solution of this problem.
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